

CCMC Scoreboards

M. Leila Mays (CCMC)

CCMC community scoreboards

https://ccmc.gsfc.nasa.gov/challenges/

Leads: Trinity College Dublin (S. Murray), ROB (J. Adries)

Leads: **BIRA-IASB** (M. Dierckxsens, N. Crosby), **GSFC** (I. Richardson),

UK Met Office (M. Marsh)

- Collecting and displaying event forecasts from multiple models into Scoreboards
- Fostering world-wide community validation projects that ultimately help researchers improve their CME, flare, and SEP forecasts and determine their usefulness.
- Allow a consistent **real-time** comparison of various operational and research forecasts. Complementary to non-real time model assessments.
- The flare and SEP scoreboards are automated such that model developers can routinely upload their predictions.
- Forecast data is parsed and stored in a database accessible to anyone via an API.

Leads: CCMC (L. Mays),
UK Met Office

Leads: **GSFC** (N. Savani), **PredSci** (P. Riley), **CCMC** (L. Mays)

CME Arrival Time Scoreboard

Community predictions for the 6 Sep 2017 CME

CME: 2017-09-06T12:24:00-CME-001

Actual Shock Arrival Time: 2017-09-07T22:30Z

Observed Geomagnetic Storm Parameters:

Max Kp: 8.0

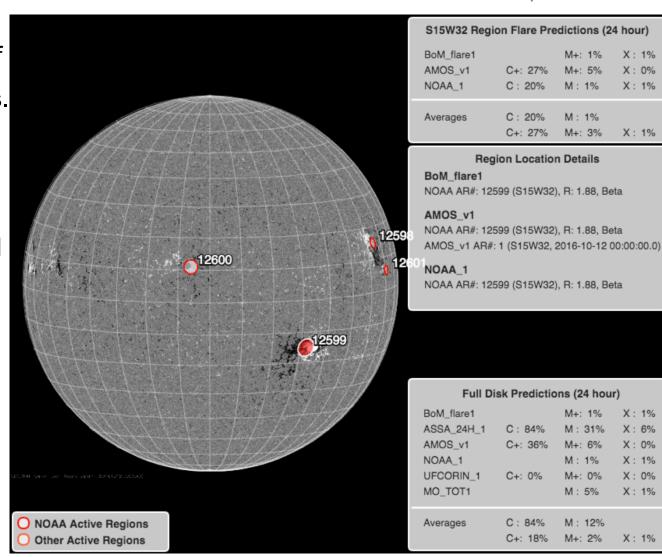
Dst min. in nT: -142

Dst min. time: 2017-09-08T02:00Z

CME Note: Associated with X9.3 flare from AR 12673.						
Predicted Shock Arrival Time	Difference (hrs)	Confidence (%)	Submitted On	Lead Time (hrs)	Predicted Geomagnetic Storm Parameter(s)	<u>Method</u>
2017-09-08T06:00Z (-3.0h, +3.0h)	7.50	0.08	2017-09-07T05:00Z	17.50	Max Kp Range: 5.0 - 8.0	WSA-ENLIL + Cone (Met Office)
2017-09-08T06:00Z (-2.0h, +2.0h)	7.50		2017-09-07T16:30Z	6.00		Ooty IPS
2017-09-08T07:32Z (-5.0h, +6.0h)	9.03		2017-09-07T08:33Z	13.95		<u>DBM</u>
2017-09-08T08:00Z (-3.0h, +3.0h)	9.50	70.0	2017-09-07T05:40Z	16.83		DBM + ESWF
2017-09-08T10:16Z (-4.0h, +4.0h)	11.77		2017-09-07T09:00Z	13.50		EAM (Effective Acceleration Model)
2017-09-08T10:25Z	11.92		2017-09-07T02:13Z	20.28		SARM
2017-09-08T10:42Z	12.20		2017-09-07T15:55Z	6.58		<u>SPM</u>
2017-09-08T12:46Z	14.27	84.0			Max Kp Range: 4.33333 - 6.5	Average of all Methods
2017-09-08T13:00Z (-7.0h, +7.0h)	14.50	90.0	2017-09-07T08:25Z	14.08	Max Kp Range: 5.0 - 7.0	Other
2017-09-08T13:52Z	15.37		2017-09-07T15:46Z	6.73		SPM2
2017-09-08T15:48Z (-9.0h, +10.0h)	17.30	100.0	2017-09-07T14:53Z	7.62	Max Kp Range: 4.0 - 6.0	Ensemble WSA-ENLIL + Cone (GSFC SWRC)
2017-09-08T16:00Z	17.50		2017-09-09T12:59Z	-38.48		WSA-ENLIL + Cone (BoM)
2017-09-08T16:30Z (+14.0h)	18.00		2017-09-07T12:32Z	9.97		ElEvo
2017-09-08T17:00Z (-12.0h, +12.0h)	18.50	80.0	2017-09-06T22:40Z	23.83	Max Kp Range: 4.0 - 6.0	Other (SIDC)
2017-09-08T18:27Z (-7.0h, +7.0h)	19.95		2017-09-06T17:23Z	29.12	Max Kp Range: 3.0 - 5.0	WSA-ENLIL + Cone (GSFC SWRC)
2017-09-08T22:00Z	23.50		2017-09-06T23:24Z	23.10	Max Kp Range: 5.0 - 7.0	WSA-ENLIL + Cone (NOAA/SWPC)

https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard

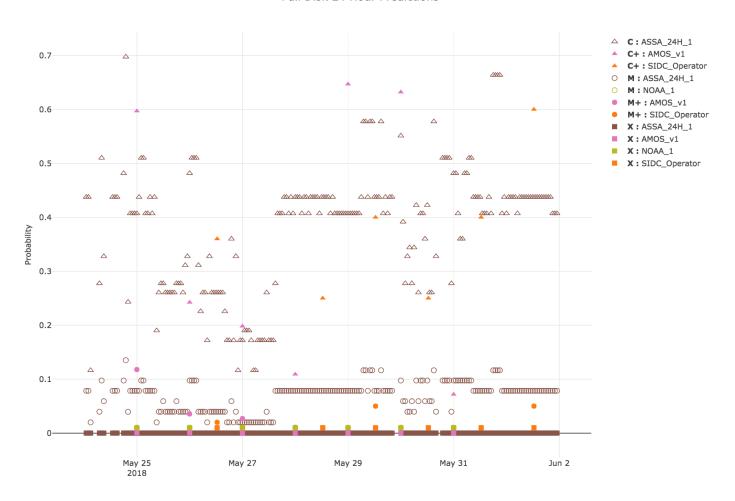
All prediction methods are welcome and all are encouraged to participate.



Flare Scoreboard

https://ccmc.qsfc.nasa.qov/challenges/flare.php

- Allows a consistent real-time comparison of various operational and research flare forecasts.
- Automated system; model developers can routinely upload their predictions to an anonymous ftp
- Forecast data is parsed and stored in a database which accessible to anyone via an API
- This project is led by Sophie Murray (TCD) and the planning group includes expert scientists as well as operational space weather prediction centers.



Flare Scoreboard

https://ccmc.gsfc.nasa.gov/challenges/flare.php

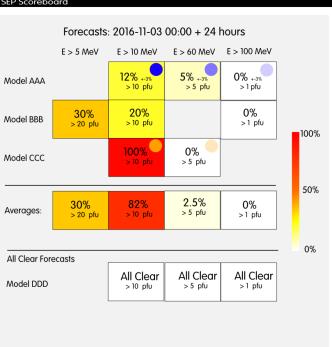
Full Disk 24 Hour Predictions

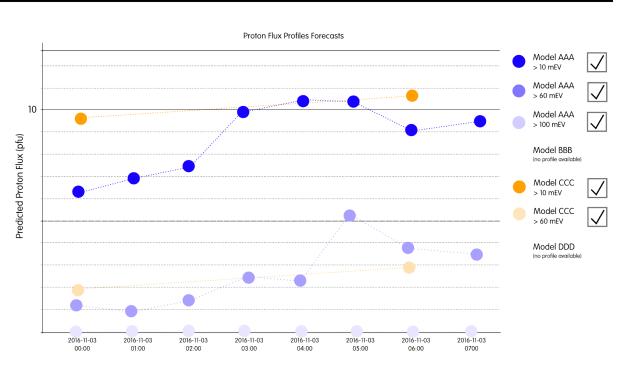
SEP Scoreboard

https://ccmc.gsfc.nasa.gov/challenges/sep.php

- Planning for the SEP Scoreboard has started (led by BIRA-IASB, GSFC, UK Met Office)
- Builds upon the flare scoreboard and CME arrival time scoreboard
- Automated system; model developers can routinely upload their predictions to an anonymous ftp. Forecast data will be parsed and stored in a database which accessible to anyone via an API
- SEP forecasts can be roughly divided into three categories:

- The SEP scoreboard will focus on real-time forecasts (first and second categories) and will collect: proton flux profile, threshold crossing probability, onset time, and duration.
- The SEP scoreboard team will also coordinate with the SEP Working Team for historical comparisons, particularly for those physics-based models in the third category that are not ready or relevant for real-time modeling.




SEP Scoreboard Planning Display ideas

settings

models \blacktriangledown

Probability heat map at a single time

issue time: 2016-11-03 00:00 ▼

https://ccmc.gsfc.nasa.gov/challenges/sep.php

Predicted proton flux time-series

Download Data